IS 676 - Requirements Engineering
Syllabus
Fall 2015

Instructor
Sameh Sabet
Information Systems Department
College of Computing Sciences
New Jersey Institute of Technology
I. COURSE SPECIFICATIONS

Course: IS 676
Course Title: Requirements Engineering
Prerequisite: IS 673/663 - Software Design & Production Methodology OR equivalent experience OR Permission of the Instructor.

Prepared: August 2015

II. COURSE OVERVIEW

This course covers the theory, principles, and applications of the methodologies and tools of requirements engineering. All aspects of requirements engineering including the knowledge and skills needed to elicit and analyze requirements, translate these requirements into technical specifications, verify that the requirements accurately capture the system requirements, and manage software requirements through the system development cycle will be covered. Students will read selected material from the literature, actively participate in discussions, labs and exercises and prepare operational requirements and technical specifications for real-world problems. Students will also be exposed to and have access to a popular requirements management software package – Rational Analyst Studio. We will spend a considerable amount of time interacting and learning through discussion of assigned readings and other material.

III. COURSE OBJECTIVES

Upon completion of this course, each student should be able to:
A. Understand and explain the nature and scope of requirements engineering.
B. Know and apply appropriate techniques to elicit and document requirements.
C. Translate operational requirements into technical specifications and document them.
D. Know and apply the methods, tools, and techniques of structured analysis.
E. Know and apply the methods, tools, and techniques of object-oriented analysis.
F. Know and apply appropriate techniques to verify and validate requirements.
G. Know and apply the methods, tools, and techniques of requirements management.
IV. ACADEMIC INTEGRITY

Students have the responsibility to know and observe the requirements of The NJIT Honor Code of Student Academic Integrity. This code prohibits cheating, fabrication or falsification of information, multiple submissions of academic work, plagiarism, abuse of academic materials, and complicity in academic dishonesty. These standards of academic integrity will be enforced in this course.

V. GRADE STRUCTURE

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>30</td>
</tr>
<tr>
<td>Project</td>
<td>40</td>
</tr>
<tr>
<td>Labs, Discussions and Participation</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL POINTS</td>
<td>100</td>
</tr>
</tbody>
</table>

Generally speaking the final letter grades will follow a curve

A (25%)
B+ (25%)
B (30%)
C+/C/F (20%)

VI. COURSE SCHEDULE

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Topic</th>
<th>Projects Due Dates</th>
<th>Group Leading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/04</td>
<td>Class Overview; Motivation for RE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>09/11</td>
<td>Introduction to Requirements Engineering</td>
<td>Groups Formed</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>09/18</td>
<td>The Rational Unified Process (RUP);</td>
<td>Project Proposal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>09/25</td>
<td>Requirements Elicitation I – Introduction;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methods and Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10/02</td>
<td>Requirements Elicitation II</td>
<td># 1 – Vision Doc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE For Outside Partners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10/09</td>
<td>Use Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10/16</td>
<td>Requirements Analysis and the UML - Object-Oriented Requirements Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10/23</td>
<td>Requirements Documentation - Specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10/30</td>
<td>Structured Analysis and Formal Methods</td>
<td># 2 – Use Cases</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11/06</td>
<td>Requirements Verification and Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11/13</td>
<td>Managing Requirements, Architecture</td>
<td>Initial SRS</td>
<td>Makeup</td>
</tr>
</tbody>
</table>
VII COURSE TEXTS AND READINGS

A. TEXTS

Required

Recommended

B. READING ASSIGNMENTS (to be read before the indicated session)

Note: The readings listed below are open to change. I will continue to update (add/remove/modify) the readings if/when I find more relevant papers as the semester progresses. I will, however, keep you informed of the changes as they occur.

Session 1: Class Overview; Motivation for RE

Session 2: Introduction to Requirements Engineering
 - Software Requirements: A Tutorial by Faulk (Thayer, pg. 158-179)
 - Using Requirements Management to Speed Delivery of Higher Quality Applications by Alan Davis and Dean Leffingwell (Online)

Session 3: The Rational Unified Process (RUP)
 - Applying Requirements Management with Use Cases by Oberg et al. - Rational Software White Paper (Online)

Session 4: Requirements Elicitation I – Introduction; Methods and Techniques
- Why Johnny Can't Write Requirements by Ivy Hooks (Online)
- Techniques for Requirements Elicitation by Goguen and Linde (Thayer, pg. 140-152)

Session 5: Requirements Elicitation II
- The Impact of Prototyping on Software System Engineering by Gomma (Thayer, pg. 479-488).
- Requirements Elicitation Methods for the Design of Interactive Systems by Sabet (Online).

Session 6: Use Cases
- Getting Started: Using Use Cases to Capture Requirements by James Rumbaugh (Thayer, pg. 153-157)
- Features, Use Cases, Requirements, Oh My! by Dean Leffingwell - Rational Software White Paper (Online)
- Use Cases -- Yesterday, Today, and Tomorrow by Ivar Jacobson.

Session 7: Requirements Analysis and the UML - Object-Oriented Analysis.
- Object-Oriented Requirements Analysis by Bailin (Thayer, pg. 334-355)
- A UML Backgrounder by Brian Talbert (Online)

Session 8: Documenting Specifications
- The Concept of Operations: The Bridge from Operational Requirement to Technical Specifications by Fairley and Thayer (Thayer, pg. 73-83)
- IEEE Std 830: Recommended Practice for Software Requirements Specifications (Thayer, pg. 207-244)

Session 9: Requirements Analysis – Structured Analysis and Formal Methods
- Structured Analysis by Svoboda (Thayer, pg. 303-322)

Session 10: Verifying and Validating Software Requirements
- Verifying and Validating Software Requirements Specifications by Wallace and Ippolito (Thayer, pg. 437-452)
- Traceability by Palmer (Thayer, pg. 412-422)

Session 11: Architecture, Managing Requirements
- A Field Guide to Effective Requirements Management Under SEI's Capability Maturity Model by Dean Leffingwell (Online)
- Extracts from CMU/SEI-93-TR-25 – CMM Practices (Online)
- Managing Requirements by Ivy Hooks (Online)
- The Five Levels of Requirements Management Maturity by Jim Heumann(online).

Session 12: Requirements Engineering for the Internet Age
- A Comparison of RUP and XP by John Smith - Rational Software White Paper (Online)

Session 13:

GORE

“Structuring Use Cases with Goals” & Use Case Fundamentals

Session 14: Conclusions and Wrap-up

- *Requirements Engineering: The Emerging Wisdom* by Jawed Siddiqi and M. Chandra Shekaran (Thayer, pg. 36-40)

VIII. PROJECTS

The Projects are an opportunity for you to apply the concepts we will discuss throughout the semester to solve “real-world” problems. Working as a team, you are to demonstrate your mastery of the concepts, methods, tools, and techniques covered in class to elicit, analyze, establish, document, validate and manage requirements of a system of your choice, pending instructor approval. You will have access to Rational Analyst Studio to create, maintain and ultimately deliver the relevant requirements artifacts.

You will be required to view the project from many angles - customer, analyst, developer, tester, manager and end user. Initially, you will assume the role of the customer and communicate your needs and desired functionality of the system that is to be developed. You are not required to actually implement the system, however, the documents created must contain enough detail so that a third party would be able to implement the system as per the specifications.

Deliverables

1. **Vision Document including the Context Diagram (5 points)**
 Provide a statement of the problem and the suggested solution’s vision and scope for instructor approval. This should include a Context Diagram showing the context of your proposed system. Ideally your team would have assumed the role of the customer and communicated to the analysts the needs and desired functionality of the system that is to be developed. The document should explain how the world would be a better place if your “new” product were in it. You must provide a comprehensive document that the instructor may or may not approve before further work can continue.
2. Use Case Package including all major Use Cases and the context Use Case Diagram (10 points)
 Provide the context Use Case Diagram and a summary document identifying all actors and their respective use cases. Further, a minimum of THREE major use cases per group member must be fully elaborated. You must provide a comprehensive document that the instructor may or may not approve and modify before further work can continue.

3. Initial SRS Package including SRS, Supplementary Specifications and Glossary
 Provide the complete software requirements specification (SRS) package and all supporting documentation (Vision doc., Use Cases, etc.) to another group. The documentation should be comprehensive enough so that the group can conduct a thorough verification and validation. This package will not be graded at this point. You will have a chance to incorporate the comments from the V and V stage and then submit the SRS for final grade.

4. Verified and Annotated SRS (10 points)
 Validate and verify another group’s SRS using appropriate V and V mechanisms. A copy of the original SRS and the annotated version will need to be turned in to the instructor and to the reviewed group. Your group’s grade will be based on the quality of your review of the provided SRS package.

5. Final SRS Package including Vision Doc., Use Cases, SRS, Supplementary Specifications and Glossary (10 points)
 Provide the final, corrected and complete package and all supporting documentation. You will have had a chance to incorporate the comments from the V and V stage at this point.

6. Final Presentation (5 points)
 Your group will present the project to the class at this time. Your presentation will give a general overview of the problem and the proposed solution system. You will also present the relevant Use Cases (via Use Case Diagrams). Another important aspect of your presentation should be the lessons learned from the project.

IX. LABS and DISCUSSIONS

Your overall grade for this component will be based on the quality of your effort in leading and participating in class discussions and exercises.

Leading Class Discussion: Each group will be responsible in leading a class discussion on the week’s theme for one class. This assumes that the group (and everyone else) has thoroughly synthesized the information from the readings and has picked out a few relevant points to lead a meaningful discussion. The group is expected to summarize the articles first. Everyone in class should have read it. The purpose is not only to present your ideas, but also to lead the rest of the class in a meaningful discussion. A very useful
way of doing this is by asking thought-provoking questions. It is not necessary to answer every question raised by your classmates, but rather to get others from the class to respond. If the class cannot answer a specific question you may then address the question to the instructor.

The group leading the discussions is also expected to post (on Moodle) TWO days ahead of time (i.e. before their presentation) a list of question they would like the rest of the class to contemplate (especially while reading the articles for that class). Please be advised that posting questions late or not at all WILL affect your grade.

Note: There is an implicit attendance element based on the rationale that if you are not present in class you couldn’t be awarded any points towards your participation. Also please note although I may or may not decide to give a quiz on the assigned readings, if you do not do the readings it will be apparent by your discussion of the topic.

Here is the grade point distribution for this component (20 points):

- Class Participation 10 points
- Leading Class Discussion 10 points

X. ANNOUNCEMENTS AND INSTRUCTIONS

Students are responsible for all postings on Moodle. Students should check Moodle at least two or three times a week for any updates. Any announcements or due dates on Moodle take precedence and are final.

NOTE: THE SCHEDULES AND PROCEDURES IN THIS COURSE ARE SUBJECT TO CHANGE IN THE EVENT OF EXTENUATING CIRCUMSTANCES. YOU WILL BE NOTIFIED OF DEVIATIONS.