Introduction to Computer Science I

<table>
<thead>
<tr>
<th>Course No.</th>
<th>CS 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections</td>
<td>002, 004,006</td>
</tr>
<tr>
<td>Title</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>Instructor</td>
<td>Narain Gehani</td>
</tr>
<tr>
<td></td>
<td>Office Room No.: GITC 4410</td>
</tr>
<tr>
<td></td>
<td>Office Phone: 973-596-4029</td>
</tr>
<tr>
<td></td>
<td>Fax: 973-596-5777</td>
</tr>
<tr>
<td></td>
<td>Email: gehani@cs.njit.edu</td>
</tr>
<tr>
<td></td>
<td>Website: http://web.njit.edu</td>
</tr>
</tbody>
</table>

Instructor Office Hours

- **CS 113 - Introduction to Computer Science I**
- **Course Syllabus, Spring 2014**
- **Format**
 - The format has lecture and lab components (recitations):
 - One lecture plus one recitation per week.
 - All students attend the same lecture class
 - Students partitioned into smaller groups attend recitation
- **Lectures + Recitation**
 - Lecture Class Meeting Time: Wednesday: 11:30 am – 12:55 pm
 - Room: CKB 204
 - Instructor: Dr. Narain Gehani

 There are 3 recitation sections attached to the above lecture class. You will be in one of them:
 - Recitation Section 002 Meeting Time: Monday: 8:30 pm – 9:55 pm
 - Room: GITC 2315C (Instructor Dr. Michael Baltrush)
 - Recitation Section 004 Meeting Time: Friday: 10:00 am – 11:25 pm
 - Room: GITC 2315C (Instructor TBA)
 - Recitation Section 006 Time: Monday: 11:30 am – 12:55 pm
 - Room: GITC 2315C (Instructor TBA)
- **Contact Information**
 - Instructor: Dr. Narain Gehani
 - Office: GITC 4304
 - Email: gehani@njit.edu
 - Office Hours: Tuesday: 2:30 pm – 4:00 pm
 - TA Contact Information
 - TA: TBA
 - Office: TBA
Email: TBA
Office Hours: TBA

Overview
This course is a comprehensive introduction to the Java programming language teaching writing, testing and debugging of programs. Topics covered fundamental Java object-oriented programming. Topics covered are primitive data types, variables, assignments expressions and operators, control statements, recursion, design and use of classes, arrays, and I/O. Other topics covered are testing and debugging and writing programs that work reliably. The course guides students to the development of comprehensive Java applications.

Textbook

Please ignore the graphics portions at the end of each chapter. Graphics are not part of this course. Similar is the case with applets.

Reference Material
Java’s strength comes from the large number of libraries. Language is relative simple – but made complex from the large library facilities For details of Java library facilities, please refer to docs.oracle.com/javase/6/docs/api/overview-summary.html

Programming Environment
We will use jGRASP, an integrated development environment (IDE) that supports Java, for program development. This environment is supported at NJITs lab classrooms. To acquire this environment for personal use, you can download it from www.jgrasp.org

You will also need to install Java development kit (JDK). Follow Java (JDK) download instructions on the jGRASP download page – go to Oracle website and download Java.

www.oracle.com/technetwork/java/javase/downloads

You can also develop and run Java programs by accessing the Java compiler (javac) and interpreter (java) directly from the Windows Command Window. You need to edit Windows Environment variables PATH to point to the BIN directory in the Java software folder

Prerequisites
CS100 – Roadmap to Computing or equivalent

Course Policies
- Attendance is mandatory.
- Moodle (moodle.njit.edu/) will be used for course communication. Please keep checking Moodle.
- Homework assignments must be submitted in hard copy.
- Homework assignments will not be accepted late except for special circumstances (such as jury duty or medical problem), for which you must provide documentation.
- All submitted work (including exams) must include your name and student ID.
- Plagiarism will result in zero credit for the assignment and/or an XF grade in the course.
- Cell phones must be turned off during class.
- Students will be informed of any modifications of the syllabus during the semester.

Material covered
- Introduction to programming and Java programming language
- Data and Expressions
- Using Classes and Methods
- Decisions and Loops
- Arrays and I/O
- Objects-Oriented Programming
 a. Object-Oriented Design
 b. Defining Classes and creating Objects
 c. Defining methods
 d. Inheritance
- Testing and Debugging
- Exceptions
Recursion

Course Goals
Upon completing the course, the students would accomplished the following:
1. Learn how to use the basic Java facilities
2. Learn how to define classes (objects) and use them to write programs
3. Be able to write non-trivial Java programs.

Learning Outcomes
Students will be able to work with a customer (someone who wants software/program to be developed) to understand the problem to be solved, design and write the (Java) program working by themselves or in a team.
Specifically, having determined the program to be written, students will be able to write Java programs that include programming concepts / Java facilities declarations, conditional and loop statements, define classes, methods (including recursive methods), handle errors, and debug/test programs for correct behavior.
Students will also be prepared with Java programming skills (as above) for advanced courses.

What do the Assignments Accomplish?
By doing assignments,
1. a student will develop problem solving expertise,
2. write Java programs putting to practice the programming concepts / Java facilities learned,
3. learn object-oriented programming, and
4. develop team working skills (in case of team projects)

Writing Java programs will involve the use of declarations, conditional and loop statements, define classes (including inheritance), methods (including recursive methods), handle errors, and debugging / testing programs for correct behavior.

Performance
Assignments and the exams aim to assess
1. Java programming skills in the context of the use of Java facilities (as mentioned above) to solve problems, and
2. understanding of programming concepts.

Evaluation
Evaluation (final grade) will be based on the following items:
- Prerequisite Quiz 1%
- Attendance 5%
- Homework 30%
- Midterm Exam 31%
- Final Exam 33%

Exam Policies
You must bring a photo ID to all exams. Students with special needs are advised to make arrangements with Disability Services.
There are no makeup exams. If you miss a midterm because of a documented special circumstance you may receive an imputed grade based on the other midterm.
If you believe that you deserve more credit than you have been awarded on a particular exam problem, you may request, within 48 hours of the exam being returned, that it be regraded. Your entire exam will be regraded, which may result in points being added or subtracted.
Exams do not require any portable electronic devices, such as cell phones or calculators, and all such devices must be put away and turned off during the exam.

University Code on Academic Integrity
Read the University Code on Academic Integrity (njit.edu/academics/integrity.php). All work that you represent as your own must be your own. Work done by others must be given proper credit.

Tentative Weekly Coverage of Material
The following table shows approximately how much time may be devoted to each topic. Actual class lectures may vary in pace and order. Recitations will supplement lectures. Students should also supplement learning by reading in the book topics covered in class. A reading list is
given following the table:

Week
1 Introduction to programming and Java programming language
(Approx) Lecture Recitation
1 Compiling and running first program
2 Writing human readable programs
2 Nuts & Bolts of Java programs
Identifiers
Types
Literals
Variables & Constants
Assignment
3 Nuts & Bolts of Java programs ...
Expressions & Operators
3 Nuts & Bolts of Java programs ...
Statements
4 Arrays
5 Object-Oriented Programming
5 Printing output & Wrapper Classes
6-7 Defining Classes
7 Finding + Swapping + Searching
7-8 More Conditionals & Loops
Midterm*
9 Object-Oriented Design
9 More about classes & objects
Static Variables/Methods
Special Variable this
Reading Code – Rational Number class
Interfaces
Method Design
10 Parameter Passing
Method Overloading
10 Testing & Debugging
11
11 More about Arrays
11 More data structures
12 More about classes – Inheritance, Abstract Classes
13 Recursion, Searching, Sorting
14 Exceptions
14 Stepwise Refinement
Time Permitting Even More Data Structures
Final Exam

*Midterm date: Wednesday March 12, 2014 in class

Readings From
Java Software Solutions by Lewis & Loftus – 7/E
as Supplement for Topics Covered in Lectures
- Java Programming Language: Pages 26 - 36.
- Program Development: Pages 36 - 44.
- Object-Oriented Programming: Pages 44 - 49.
- Strings: Pages 58 – 65.
- Variables + Assignment: Pages 65 – 70.
- Primitive Data Types: 71 – 75.
- Expressions: Pages 75 – 83.
- Data Conversion: Pages 83 – 87.
- Interactive Programs: Pages 87 – 92.
- Creating objects: Pages 114 – 118
- String Class: Pages 118 – 1222
- Random & Math Classes: 126 – 132
- Wrapper Classes: 141 – 144
- Class Dir: Pages 162 – 167
- Encapsulation + Visibility Modifiers: Pages 169 – 172
- Method (includes constructors): Pages 172 – 182
- Boolean expressions & if statements: Pages 210 – 229
- Loops: Pages 230 – 241
- Switch statement & conditional operator: Pages 270 – 275
- Do statement & for loops: Pages 275 – 284
- static variables & methods: Pages 305 – 309
- Interfaces: Pages 322 – 327
- Method Parameters & Overloading: Pages 338 – 345
- Testing: Pages 345 – 349
- Arrays: Pages 380 – 392
- Arrays of Objects: 392 – 401
- Command-line Arguments: Pages 402 – 404
- Variable Length Parameter Lists: Pages 404 – 408
- Two Dimensional Arrays: Pages 408 – 412
- Inheritance: Pages 443 – 453
- Sorting: Pages 504 – 513
- Searching: Pages 513 – 519
- Exceptions: Pages 537 – 548
- Recursion: Pages 584 – 601
- Queues & Stacks: Pages 627 – 631

| Topics |
| Text Book(s) |
| Time & Place |
| Other Info |

Registrar's Website